
DOI: 10.1007/s10955-005-3035-z
Journal of Statistical Physics, Vol. 119, Nos. 3/4, May 2005 (© 2005)

Zero Temperature Limits of Gibbs-Equilibrium States
for Countable Alphabet Subshifts of Finite Type
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Let �A be a finitely primitive subshift of finite type on a countable alphabet.
For appropriate functions f : �A → IR, the family of Gibbs-equilibrium states
(µtf )t �1 for the functions tf is shown to be tight. Any weak∗-accumulation
point as t →∞ is shown to be a maximizing measure for f .

KEY WORDS: Gibbs state; equilibrium state; ground state; maximizing mea-
sure; countable alphabet subshift of finite type.

1. INTRODUCTION

Let �A be a subshift of finite type on a countably infinite alphabet, and
suppose that the function f :�A → IR has summable variations. Further
assumptions on f ensure it has a unique Gibbs-equilibrium state µf (see
Section 2 for more details). The purpose of this article is to analyse the
behaviour, as t → ∞, of the Gibbs-equilibrium states µtf of tf . It will
be shown that the family (µtf )t �1 is tight, thereby ensuring that it has a
weak∗ accumulation point. Any such accumulation point is shown to be
a maximizing measure for the function f (i.e. its f -integral dominates the
integral of f with respect to other shift-invariant probability measures).
This extends the analogous results of refs. 7–9 which were proved in the
setting of finite alphabet subshifts of finite type (see also ref. 1 for related
results in the context of quantum and classical lattice models).

The thermodynamic interpretation (cf. ref. 17) of the parameter t is
as an inverse temperature of a system, while the measure µtf describes the
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equilibrium of the system at temperature 1/t (i.e. the one which minimizes
the “free energy”). The t →∞ limit is therefore a zero temperature limit,
and an accumulation point of the µtf can be interpreted as a ground state.

If f has a unique maximizing measure then our result asserts that µtf

will converge to that measure. A more intriguing sitution arises when there
are several maximizing measures, in which case we only know that µtf will
accumulate on some non-empty subset of such measures. However, in all
known examples it has been observed that the family µtf does converge,
so a natural conjecture is that this is always the case; if this conjecture is
true then the limit of the µtf may be regarded as the most “physically rel-
evant” maximizing measure. This problem is open even for finite alphabet
subshifts of finite type, though Brémont(4) has shown that if f depends on
only finitely many coordinates then the µtf do converge (cf. refs. 6, 9, 13
for related results).

We remark that Radin (see e.g. refs. 14–16) and Schrader(20) have con-
sidered similar problems for locally constant functions defined on multi-
dimensional full shifts AZZd

where the alphabet A is finite, and there is
related work of Kerimov (see e.g. ref. 11) in the context of one-dimen-
sional full shifts AZZ with countably infinite alphabet A, though here the
ground state is always unique.

2. PRELIMINARIES

Let � = ININ denote the full shift on the countable alphabet IN =
{1,2, . . . }, equipped with the product topology.

Given an adjacency matrix A: IN × IN → {0,1}, let �A denote the
associated subshift of finite type

�A ={x ∈�: A(xn, xn+1)=1 for all n � 1}.

The subshift of finite type �A is compact if and only if INA :={i ∈IN : [i] �=
∅} is finite.

We shall suppose that A is finitely primitive, i.e. there exists an integer
N � 0, and a finite sub-alphabet M⊂ IN , such that for all x ∈�A and all
i ∈ INA there exists w∈M

N with iwx ∈�A. This implies that the shift map
T :�A →�A, defined by (T x)n =xn+1, is topologically mixing.

For n ∈ IN , define �n: �A → INn by �n(x) = (x1, . . . , xn), and
πn: �A → IN by πn(x)=xn. If w∈ INn then the corresponding cylinder set
in �A is defined by [w]={x ∈�A: �n(x)=w}.
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We shall assume that f : �A → IR has summable variations, i.e. that

V (f ) :=
∞∑

n=1

varn(f )<∞, (1)

where

varn(f )= sup
�n(x)=�n(y)

|f (x)−f (y)|.

In particular this implies that f is uniformly continuous (though not nec-
essarily bounded, since var0(f )= supx,y∈�A

|f (x)−f (y)| is not included in
the above sum).

We also assume that

∑

i∈IN

exp(supf |[i])<∞, (2)

so in particular f is bounded above, and is unbounded below if and only
if INA is infinite. The summability condition (2) allows much of the ther-
modynamic formalism (cf. refs. 13, 17) for finite alphabet subshifts of finite
type to be generalized to the non-compact setting.3 In particular it is
equivalent (ref. 12, Prop. 2.1.9) to the finiteness of the topological pressure

P(f )= lim
n→∞

1
n

log
∑

T ny=y

exp

(
sup

x∈[�n(y)]

n−1∑

i=0

f (T ix)

)
,

and implies the variational characterization (ref. 12, Thm. 2.1.8)

P(f )= sup
{
h(m)+

∫
f dm: m∈M,

∫
f dm>−∞

}
, (3)

where M denotes the set of T -invariant Borel probability measures on �A,
and h(m) the metric entropy of m∈M.

3Our reference to this generalized thermodynamic formalism is ref. 12 (though see also ref.
18, 19), in which f is assumed to be locally Hölder (i.e. varn(f )→0 exponentially fast). The
proofs in ref. 12 can, however, be easily adapted to the more general case where f has sum-
mable variations.
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Moreover, there is (see ref. 12, Theorems 2.2.4 and 2.3.3) a unique
measure µf ∈M for which there exist constants C2 >C1 >0 such that

C1 � µf [�n(x)]

exp(
∑n−1

i=0 f (T ix)−nP (f ))
� C2 (4)

for all x ∈�A, n � 1. In fact (ref. 12, Thm. 2.2.7) we may choose

C2 = exp (4V (f )) .

The measure µf is called the Gibbs state for f .
Suppose furthermore that4

∑

i∈IN

inf(−f |[i]) exp(inf f |[i])<∞ (5)

so that in particular
∫

f dµf >−∞.
In this case (see ref. 12, Lem. 2.2.8, Thm. 2.2.9) µf is an equilibrium

state for f , in the sense that

P(f )=h(µf )+
∫

f dµf . (6)

Indeed it is the unique equilibrium state5 for f : if m ∈ M \ {µf } is any
other invariant measure with

∫
f dm > −∞, then h(m) + ∫

f dm < P(f ).
Since µf is both the unique Gibbs state and the unique equilibrium state
for f , we shall henceforth refer to it as the Gibbs-equilibrium state for f .

Since f satisfies (1), (2) and (5), so does the function tf for any t � 1.
It follows that each such tf also has a unique Gibbs-equilibrium state µtf .

A maximizing measure for f is a measure µ∈M such that
∫

f dµ �∫
f dm for all m∈M. Our assumptions on f ensure (see ref. 10) that this

definition of a maximizing measure is equivalent to requiring that

∫
f dµ= sup

x∈�A

lim sup
n→∞

1
n

n−1∑

i=0

f (T ix).

4Note that the lefthand side of (5) is well-defined: (2), together with the fact that var1(f )<

∞, implies that inf(−f |[i])→∞, so that inf(−f |[i]) is positive except for finitely many i.
5This existence and uniqueness is proved in ref. 12 under the hypothesis of finite irreducibil-
ity (see ref. 12 for the definition), which is weaker than finite primitivity. Uniqueness also
follows from ref. 5, where it is shown that if T is topologically transitive (a weaker condi-
tion than finite irreducibility) then f has at most one equilibrium state.
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They also ensure (see ref. 10) the existence of a maximizing measure. The
set of maximizing measures for f , which in general is not a singleton, will
be denoted Mmax(f ). The general properties of a maximizing measure are
rather different from those of a Gibbs-equilibrium state. For example the
support of a Gibbs-equilibrium state is always the full space �A, whereas
a maximizing measure has full support only in the trivial situation where
f is cohomologous to a constant (i.e. f =c+ϕ ◦T −ϕ for some c∈IR and
some bounded continuous ϕ). This latter fact is because if f is as above
then there exists a bounded continuous ϕ such that the set of maxima of
f +ϕ −ϕ ◦T contains the support of a T -invariant measure (see ref. 10).

3. PROOFS OF RESULTS

To prove our main result, Theorem 1, we first require two preparatory
lemmas. For the first of these we only use the fact that f is continuous
and bounded above.

Lemma 1. The map

M−→ IR

µ 	−→
∫

f dµ

is upper semi-continuous with respect to the weak∗ topology on M.

Proof. Suppose that µi →µ in the weak∗ topology. That is,
∫

g dµi →∫
g dµ for all bounded continuous functions g. We must prove that

lim sup
i→∞

∫
f dµi �

∫
f dµ. (7)

Let fk ↘f be a sequence of bounded continuous functions converg-
ing pointwise to f , for example fk = max(f,−k). If I ∈ IR is such that
I >

∫
f dµ then

∫
fk dµ<I for all sufficiently large k � 1, by the monotone

convergence theorem. Choose one such k, and let δ >0 be arbitrary. Since
fk is a bounded continuous function, and µi →µ in the weak∗ topology,∫

fk dµ >
∫

fk dµi − δ for all i sufficiently large. But
∫

fk dµi �
∫

f dµi

since fk � f , hence

I >

∫
fk dµ>

∫
fk dµi − δ �

∫
f dµi − δ
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for all i sufficiently large. But δ > 0 and I >
∫

f dµ were arbitrary, so in
fact

∫
f dµ �

∫
f dµi (8)

for all i sufficiently large, and (7) follows.

For the second lemma we only use the fact that the µtf are Gibbs
states.

Lemma 2. The family of Gibbs-equilibrium states (µtf )t �1 is tight,
i.e. for all ε>0 there exists a compact set K ⊂�A such that µtf (K)>1−ε

for all t � 1.

Proof. Given ε > 0, we will find an increasing sequence (nk) in IN

such that the compact set K = {x ∈ �A: 1 � xk � nk ∀k ∈ IN} satisfies
µtf (K)>1− ε for all t � 1. Now

µtf (K) = µtf

(
�A \∪∞

k=1{x ∈�A: xk >nk}
)

� 1−
∞∑

k=1

µtf ({x ∈�A: xk >nk})

= 1−
∞∑

k=1

∞∑

i=nk+1

µtf (π−1
k (i))

= 1−
∞∑

k=1

∞∑

i=nk+1

µtf [i],

so to ensure that µtf (K)> 1 − ε it suffices to choose the integers nk such
that

∞∑

i=nk+1

µtf [i]<
ε

2k
for all k ∈ IN, t � 1. (9)

We now show that such a choice is possible. First, the Gibbs property
(4), with n=1 and f replaced by tf , gives

µtf [i] � e4tV (f ) exp
(
sup{tf |[i]}−P(tf )

)
. (10)



Zero Temperature Limits of Gibbs-Equilibrium States 771

Now let m∈M be any measure for which I :=∫ f dm is finite (e.g. we
may take m to be supported on a periodic orbit). From (3) we have

P(tf )− tI =P (t (f − I )) �
∫

t (f − I ) dm+h(m) � 0

so together with (10) we deduce that

µtf [i]A � e4tV (f ) exp
(
sup{t (f − I )|[i]}

)
e−P(t (f −I ))

� e4tV (f ) exp
(
sup{t (f − I )|[i]}

)
(11)

= exp
(
t
(
4V (f )− I + sup{f |[i]}

))
.

The summability condition (2) implies that supf |[i] →−∞ as i →∞,
with the convention that f |[i] =−∞ if [i]=∅. In particular there exists J ∈
IN such that if i � J then

4V (f )− I + supf |[i] <0.

So, if t � 1 and i � J then t (4V (f )−I + supf |[i])<4V (f )−I + supf |[i] <
0, and from (11) we obtain

µtf [i] � e4V (f )−I esupf |[i] . (12)

The summability condition (2) means there exists nk � J such that

∞∑

i=nk+1

esupf |[i] <
ε

2k
eI−4V (f ),

and combined with (12) we deduce (9), as required.

Theorem 1. The family of Gibbs measures (µtf )t �1 has a weak∗
accumulation point as t →∞. Any such accumulation point µ is a maxi-
mizing measure for f , and

∫
f dµ= limt→∞

∫
f dµtf .

Proof. By Lemma 2 the family (µtf )t �1 is tight, so by Prohorov’s
theorem ref. 2, p. 37 there exists at least one weak∗ accumulation point.

Now suppose µ is any such accumulation point. If p(t) = P(tf ) for
t � 1 then p is real analytic (cf. ref. 12, Thm. 2.6.12), and p′(t)=∫ f dµtf

(cf. ref. 12, Prop. 2.6.13). But (3) implies that p is convex, so that t 	→
p′(t)=∫ f dµtf is non-decreasing, and bounded above by supf . It follows
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that the limit limt→∞ p′(t) = limt→∞
∫

f dµtf exists and is finite. More-
over, Lemma 1 gives

lim
t→∞

∫
f dµtf �

∫
f dµ. (13)

In particular
∫

f dµ>−∞. From (3) and (6) it follows that
∫

tf dµtf +h(µtf ) �
∫

tf dµ+h(µ),

so
∫

f dµtf + h(µtf )

t
�
∫

f dµ+ h(µ)

t
. (14)

Now h(µtf )=P(tf )− t
∫

f dµtf =p(t)− tp′(t), so

d

dt
h(µtf )=−tp′′(t)<0

for t � 1. Therefore h(µtf ) is a decreasing function of t � 1, and in par-
ticular is bounded, so letting t →∞ in (14) gives

lim
t→∞

∫
f dµtf �

∫
f dµ.

Combining this with (13) we see that limt→∞
∫

f dµtf �
∫

f dµ, as
required.

We now show that µ is f -maximizing. If not then there exists ν ∈M
with

∫
f dν − ∫

f dµ = ε > 0. Now f is bounded above, so
∫

f dν < ∞.
Moreover P(f ) < ∞, so (3) and (6) imply that h(ν) < ∞. We can then
define the affine map lν : IR→IR by lν(t)=h(ν)+ t

∫
f dν. Now t 	→p′(t)=∫

f dµtf is a function which increases to its limit
∫

f dµ, so in particular
∫

f dµ �
∫

f dµtf =p′(t) for all t � 1,

and hence

l′ν(t)=
∫

f dν =
∫

f dµ+ ε � p′(t)+ ε

for all t � 1. Therefore lν(t) > p(t) for all sufficiently large t . That is,
h(ν)+ ∫ tf dν >P (tf ) for all sufficiently large t , contradicting (3). There-
fore µ is f -maximizing.
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Note that in the case of a finite alphabet subshift of finite type �A,
the identity

∫
f dµ = limt→∞

∫
f dµtf in Theorem 1 follows immediately

from the fact that µ is a weak∗ accumulation point of µtf , since the con-
tinuous function f is automatically bounded on the compact space �A.

In the finite alphabet case some extra information is known about µ:
it is of maximal entropy within the class of f -maximizing measures (see
refs. 7–9). In the infinite alphabet case this is an open problem:

Question 1. If µ is a weak∗ accumulation point of (µtf )t �1, is it
the case that

h(µ)= sup
m∈Mmax(f )

h(m) ? (15)

An approach to proving (15) is to first show that

h(µ)= lim
t→∞h(µtf )= inf

t �1
h(µtf ). (16)

The second equality in (16) is certainly true in the infinite alphabet
case, since t 	→h(µtf ) is decreasing (as noted in the proof of Theorem 1),
and bounded below. Moreover

lim
t→∞h(µtf ) � h(µ), (17)

since µtf is the equilibrium state for tf , while µ is f -maximizing and
hence tf -maximizing for t � 0, so

h(µtf )−h(µ) �
∫

tf dµ−
∫

tf dµtf � 0

for all t � 1.
We do not know, however, if equality holds in (17):

Question 2. If µ is a weak∗ accumulation point of (µtf )t �1, is it
the case that h(µ)= limt→∞ h(µtf )?

As noted above, in the finite alphabet case the answer is affirma-
tive; this is proved by combining (17) with the well known fact (ref. 21,
Thm. 8.2) that the entropy map ν 	→h(ν) is upper semi-continuous on M.
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By contrast, for infinite alphabet subshifts of finite type the entropy
map is in general not upper semi-continuous. To see this, let � be the full
shift on IN , and define the probability vector Pn by

Pn = (1−n−1, (nkn)
−1, . . . , (nkn)

−1
︸ ︷︷ ︸

kn terms

,0,0, . . . ),

where kn = �en2�. Let µn be the Bernoulli measure corresponding to Pn

(so the support of µn is the full shift on the symbols {1, . . . , n + 1}). Its
entropy (see ref. 21, p. 102) is

h(µn) = −(1−n−1) log(1−n−1)+n−1 log(nkn) > n.

In particular h(µn) → ∞ as n → ∞, whereas the weak∗ limit of (µn) is
the Dirac measure concentrated on the fixed point (1,1, . . . ). This measure
has zero entropy, so the entropy map is not upper semi-continuous.

Of course this absence of upper semi-continuity does not rule out
an affirmative answer to Question 2. In this case Question 1 could
also be answered affirmatively, by the following argument. If h(µ) =
supm∈Mmax(f ) h(m) were not true then we could find m ∈ Mmax(f ) with
h(m)−h(µ)= ε >0. The affirmative answer to Question 2 then gives

h(m)− lim
t→∞h(µtf )= ε,

so that

h(m)−h(µtf ) � ε

2
(18)

for sufficiently large t � 1.
But m is f -maximizing, so

∫
f dm �

∫
f dµtf for all t � 1, and there-

fore
∫

tf dm �
∫

tf dµtf (19)

for all t � 1. Combining (18) and (19) gives

h(m)+
∫

tf dm>h(µtf )+
∫

tf dµtf

for t � 1 sufficiently large. But this is a contradiction, because µtf is an
equilibrium state for the function tf .
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